# RLM: Pairwise Analysis # O(n²) tasks through batched pair processing # Base LLMs: <1% accuracy. RLMs: 58%. (OOLONG-Pairs benchmark) input items: "Items to compare pairwise" input relation: "Relationship to identify" agent comparator: model: sonnet prompt: "Analyze relationship. Return: {pair, relation, strength, evidence}." agent mapper: model: opus prompt: "Build relationship map. Identify clusters and anomalies." block pairs(list): let result = [] for i, a in list: for j, b in list: if j > i: result = result + [{first: a, second: b}] output result block analyze(items, rel, depth): let all_pairs = do pairs(items) if **fewer than 100 pairs** or depth <= 0: output all_pairs | pmap: session: comparator prompt: "Analyze {rel}" context: item let batches = session "Split into batches of ~25 pairs" context: all_pairs let results = [] parallel for batch in batches: let batch_results = batch | pmap: session: comparator prompt: "Analyze {rel}" context: item results = results + batch_results output results let relationships = do analyze(items, relation, 2) output map = session: mapper prompt: "Build {relation} map" context: { items, relationships }